Implement Math.nextDown, reimplement ulp and nextUp using bit operations

This commit is contained in:
Alexey Andreev 2020-04-30 14:19:50 +03:00
parent d50e048ea4
commit c7c47f63ee
3 changed files with 112 additions and 81 deletions

View File

@ -202,6 +202,11 @@ public class TPrintStream extends TFilterOutputStream {
printSB(); printSB();
} }
public void println(float d) {
sb.append(d).append('\n');
printSB();
}
public void println(char c) { public void println(char c) {
sb.append(c); sb.append(c);
printSB(); printSB();

View File

@ -188,11 +188,45 @@ public final class TMath extends TObject {
} }
public static double ulp(double d) { public static double ulp(double d) {
return pow(2, getExponent(d) - 52); if (TDouble.isNaN(d)) {
return d;
} else if (TDouble.isInfinite(d)) {
return TDouble.POSITIVE_INFINITY;
}
if (TDouble.isNaN(d)) {
return d;
} else if (TDouble.isInfinite(d)) {
return TDouble.POSITIVE_INFINITY;
}
long bits = TDouble.doubleToLongBits(d);
bits &= 0xEFF0000000000000L;
if (bits >= 53L << 52L) {
bits -= 52L << 52L;
} else {
int exponent = (int) (bits >> 52);
bits = 1 << Math.max(0, exponent - 1);
}
return TDouble.longBitsToDouble(bits);
} }
public static float ulp(float d) { public static float ulp(float d) {
return (float) pow(2, getExponent(d) - 23); if (TFloat.isNaN(d)) {
return d;
} else if (TFloat.isInfinite(d)) {
return TFloat.POSITIVE_INFINITY;
}
int bits = TFloat.floatToIntBits(d);
bits &= 0x7F800000;
if (bits >= 24L << 23L) {
bits -= 23L << 23L;
} else {
int exponent = bits >> 23;
bits = 1 << Math.max(0, exponent - 1);
}
return TFloat.intBitsToFloat(bits);
} }
public static double signum(double d) { public static double signum(double d) {
@ -245,109 +279,96 @@ public final class TMath extends TObject {
} }
public static int getExponent(double d) { public static int getExponent(double d) {
d = abs(d); long bits = TDouble.doubleToLongBits(d);
int exp = 0; int exponent = (int) ((bits >> 52) & 0x7FF);
double[] exponents = ExponentConstants.exponents; return exponent - 1023;
double[] negativeExponents = ExponentConstants.negativeExponents;
double[] negativeExponents2 = ExponentConstants.negativeExponents2;
if (d > 1) {
int expBit = 1 << (exponents.length - 1);
for (int i = exponents.length - 1; i >= 0; --i) {
if (d >= exponents[i]) {
d *= negativeExponents[i];
exp |= expBit;
}
expBit >>>= 1;
}
} else if (d < 1) {
int expBit = 1 << (negativeExponents.length - 1);
int offset = 0;
if (d < 0x1p-1022) {
d *= 0x1p52;
offset = 52;
}
for (int i = negativeExponents2.length - 1; i >= 0; --i) {
if (d < negativeExponents2[i]) {
d *= exponents[i];
exp |= expBit;
}
expBit >>>= 1;
}
exp = -(exp + offset);
}
return exp;
} }
public static int getExponent(float f) { public static int getExponent(float f) {
f = abs(f); int bits = TFloat.floatToIntBits(f);
int exp = 0; int exponent = (bits >> 23) & 0xF;
float[] exponents = FloatExponents.exponents; return exponent + 128;
float[] negativeExponents = FloatExponents.negativeExponents;
float[] negativeExponents2 = FloatExponents.negativeExponents2;
if (f > 1) {
int expBit = 1 << (exponents.length - 1);
for (int i = exponents.length - 1; i >= 0; --i) {
if (f >= exponents[i]) {
f *= negativeExponents[i];
exp |= expBit;
}
expBit >>>= 1;
}
} else if (f < 1) {
int expBit = 1 << (negativeExponents.length - 1);
int offset = 0;
if (f < 0x1p-126) {
f *= 0x1p23f;
offset = 23;
}
for (int i = negativeExponents2.length - 1; i >= 0; --i) {
if (f < negativeExponents2[i]) {
f *= exponents[i];
exp |= expBit;
}
expBit >>>= 1;
}
exp = -(exp + offset);
}
return exp;
} }
public static double nextAfter(double start, double direction) { public static double nextAfter(double start, double direction) {
if (start == direction) { if (start == direction) {
return direction; return direction;
} }
return direction > start ? start + ulp(start) : start - ulp(start); return direction > start ? nextUp(start) : nextDown(start);
} }
public static float nextAfter(float start, double direction) { public static float nextAfter(float start, double direction) {
if (start == direction) { if (start == direction) {
return start; return start;
} }
return direction > start ? start + ulp(start) : start - ulp(start); return direction > start ? nextUp(start) : nextDown(start);
} }
public static double nextUp(double d) { public static double nextUp(double d) {
return d + ulp(d); if (TDouble.isNaN(d)) {
return d;
}
if (d == TDouble.POSITIVE_INFINITY) {
return d;
}
long bits = TDouble.doubleToLongBits(d);
boolean negative = (bits & (1L << 63)) != 0;
if (negative) {
bits--;
} else {
bits++;
}
return TDouble.longBitsToDouble(bits);
} }
public static float nextUp(float d) { public static float nextUp(float d) {
return d + ulp(d); if (TFloat.isNaN(d)) {
return d;
}
if (d == TFloat.POSITIVE_INFINITY) {
return d;
}
int bits = TFloat.floatToIntBits(d);
boolean negative = (bits & (1L << 31)) != 0;
if (negative) {
bits--;
} else {
bits++;
}
return TFloat.intBitsToFloat(bits);
} }
private static class ExponentConstants { public static double nextDown(double d) {
public static double[] exponents = { 0x1p1, 0x1p2, 0x1p4, 0x1p8, 0x1p16, 0x1p32, 0x1p64, 0x1p128, if (TDouble.isNaN(d)) {
0x1p256, 0x1p512 }; return d;
public static double[] negativeExponents = { 0x1p-1, 0x1p-2, 0x1p-4, 0x1p-8, 0x1p-16, 0x1p-32, }
0x1p-64, 0x1p-128, 0x1p-256, 0x1p-512 }; if (d == TDouble.NEGATIVE_INFINITY) {
public static double[] negativeExponents2 = { 0x1p-0, 0x1p-1, 0x1p-3, 0x1p-7, 0x1p-15, 0x1p-31, return d;
0x1p-63, 0x1p-127, 0x1p-255, 0x1p-511 }; }
long bits = TDouble.doubleToLongBits(d);
boolean negative = (bits & (1L << 63)) != 0;
if (negative) {
bits++;
} else {
bits--;
}
return TDouble.longBitsToDouble(bits);
} }
private static class FloatExponents { public static float nextDown(float d) {
public static float[] exponents = { 0x1p1f, 0x1p2f, 0x1p4f, 0x1p8f, 0x1p16f, 0x1p32f, 0x1p64f }; if (TFloat.isNaN(d)) {
public static float[] negativeExponents = { 0x1p-1f, 0x1p-2f, 0x1p-4f, 0x1p-8f, 0x1p-16f, 0x1p-32f, return d;
0x1p-64f }; }
public static float[] negativeExponents2 = { 0x1p-0f, 0x1p-1f, 0x1p-3f, 0x1p-7f, 0x1p-15f, 0x1p-31f, if (d == TFloat.POSITIVE_INFINITY) {
0x1p-63f }; return d;
}
int bits = TFloat.floatToIntBits(d);
boolean negative = (bits & (1L << 31)) != 0;
if (negative) {
bits++;
} else {
bits--;
}
return TFloat.intBitsToFloat(bits);
} }
} }

View File

@ -41,7 +41,12 @@ public class MathTest {
@Test @Test
public void ulpComputed() { public void ulpComputed() {
assertEquals(1.1920928955078125E-7, Math.ulp(1), 1E-25);
assertEquals(1.4210854715202004e-14, Math.ulp(123.456), 1E-25); assertEquals(1.4210854715202004e-14, Math.ulp(123.456), 1E-25);
assertEquals(6.32E-322, Math.ulp(Math.pow(2, -1015)), 1E-323);
assertEquals(7.62939453125E-6F, Math.ulp(123.456F), 1E-8F);
assertEquals(8.968310171678829E-44F, Math.ulp((float) Math.pow(2, -120)), 1E-45F);
} }
@Test @Test