package net.lax1dude.eaglercraft.v1_8; import java.nio.charset.Charset; import java.util.Arrays; public abstract class BaseNCodec { static enum CodecPolicy { STRICT, LENIANT; } /** * Holds thread context so classes can be thread-safe. * * This class is not itself thread-safe; each thread must allocate its own copy. * * @since 1.7 */ static class Context { /** * Place holder for the bytes we're dealing with for our based logic. Bitwise * operations store and extract the encoding or decoding from this variable. */ int ibitWorkArea; /** * Place holder for the bytes we're dealing with for our based logic. Bitwise * operations store and extract the encoding or decoding from this variable. */ long lbitWorkArea; /** * Buffer for streaming. */ byte[] buffer; /** * Position where next character should be written in the buffer. */ int pos; /** * Position where next character should be read from the buffer. */ int readPos; /** * Boolean flag to indicate the EOF has been reached. Once EOF has been reached, * this object becomes useless, and must be thrown away. */ boolean eof; /** * Variable tracks how many characters have been written to the current line. * Only used when encoding. We use it to make sure each encoded line never goes * beyond lineLength (if lineLength > 0). */ int currentLinePos; /** * Writes to the buffer only occur after every 3/5 reads when encoding, and * every 4/8 reads when decoding. This variable helps track that. */ int modulus; Context() { } /** * Returns a String useful for debugging (especially within a debugger.) * * @return a String useful for debugging. */ @SuppressWarnings("boxing") // OK to ignore boxing here @Override public String toString() { return HString.format( "%s[buffer=%s, currentLinePos=%s, eof=%s, ibitWorkArea=%s, lbitWorkArea=%s, " + "modulus=%s, pos=%s, readPos=%s]", this.getClass().getSimpleName(), Arrays.toString(buffer), currentLinePos, eof, ibitWorkArea, lbitWorkArea, modulus, pos, readPos); } } /** * EOF * * @since 1.7 */ static final int EOF = -1; /** * MIME chunk size per RFC 2045 section 6.8. * *

* The {@value} character limit does not count the trailing CRLF, but counts all * other characters, including any equal signs. *

* * @see RFC 2045 section 6.8 */ public static final int MIME_CHUNK_SIZE = 76; /** * PEM chunk size per RFC 1421 section 4.3.2.4. * *

* The {@value} character limit does not count the trailing CRLF, but counts all * other characters, including any equal signs. *

* * @see RFC 1421 section * 4.3.2.4 */ public static final int PEM_CHUNK_SIZE = 64; private static final int DEFAULT_BUFFER_RESIZE_FACTOR = 2; /** * Defines the default buffer size - currently {@value} - must be large enough * for at least one encoded block+separator */ private static final int DEFAULT_BUFFER_SIZE = 8192; /** * The maximum size buffer to allocate. * *

* This is set to the same size used in the JDK {@code java.util.ArrayList}: *

*
Some VMs reserve some header words in an array. Attempts to * allocate larger arrays may result in OutOfMemoryError: Requested array size * exceeds VM limit.
*/ private static final int MAX_BUFFER_SIZE = Integer.MAX_VALUE - 8; /** Mask used to extract 8 bits, used in decoding bytes */ protected static final int MASK_8BITS = 0xff; /** * Byte used to pad output. */ protected static final byte PAD_DEFAULT = '='; // Allow static access to default /** * Chunk separator per RFC 2045 section 2.1. * * @see RFC 2045 section 2.1 */ static final byte[] CHUNK_SEPARATOR = { '\r', '\n' }; /** * Compares two {@code int} values numerically treating the values as unsigned. * Taken from JDK 1.8. * *

* TODO: Replace with JDK 1.8 Integer::compareUnsigned(int, int). *

* * @param x the first {@code int} to compare * @param y the second {@code int} to compare * @return the value {@code 0} if {@code x == y}; a value less than {@code 0} if * {@code x < y} as unsigned values; and a value greater than {@code 0} * if {@code x > y} as unsigned values */ private static int compareUnsigned(final int xx, final int yy) { int x = xx + Integer.MIN_VALUE; int y = yy + Integer.MIN_VALUE; return (x < y) ? -1 : ((x == y) ? 0 : 1); } /** * Create a positive capacity at least as large the minimum required capacity. * If the minimum capacity is negative then this throws an OutOfMemoryError as * no array can be allocated. * * @param minCapacity the minimum capacity * @return the capacity * @throws OutOfMemoryError if the {@code minCapacity} is negative */ private static int createPositiveCapacity(final int minCapacity) { if (minCapacity < 0) { // overflow throw new OutOfMemoryError("Unable to allocate array size: " + (minCapacity & 0xffffffffL)); } // This is called when we require buffer expansion to a very big array. // Use the conservative maximum buffer size if possible, otherwise the biggest // required. // // Note: In this situation JDK 1.8 java.util.ArrayList returns // Integer.MAX_VALUE. // This excludes some VMs that can exceed MAX_BUFFER_SIZE but not allocate a // full // Integer.MAX_VALUE length array. // The result is that we may have to allocate an array of this size more than // once if // the capacity must be expanded again. return (minCapacity > MAX_BUFFER_SIZE) ? minCapacity : MAX_BUFFER_SIZE; } /** * Gets a copy of the chunk separator per RFC 2045 section 2.1. * * @return the chunk separator * @see RFC 2045 section 2.1 * @since 1.15 */ public static byte[] getChunkSeparator() { return CHUNK_SEPARATOR.clone(); } /** * Checks if a byte value is whitespace or not. Whitespace is taken to mean: * space, tab, CR, LF * * @param byteToCheck the byte to check * @return true if byte is whitespace, false otherwise */ protected static boolean isWhiteSpace(final byte byteToCheck) { switch (byteToCheck) { case ' ': case '\n': case '\r': case '\t': return true; default: return false; } } /** * Increases our buffer by the {@link #DEFAULT_BUFFER_RESIZE_FACTOR}. * * @param context the context to be used * @param minCapacity the minimum required capacity * @return the resized byte[] buffer * @throws OutOfMemoryError if the {@code minCapacity} is negative */ private static byte[] resizeBuffer(final Context context, final int minCapacity) { // Overflow-conscious code treats the min and new capacity as unsigned. final int oldCapacity = context.buffer.length; int newCapacity = oldCapacity * DEFAULT_BUFFER_RESIZE_FACTOR; if (compareUnsigned(newCapacity, minCapacity) < 0) { newCapacity = minCapacity; } if (compareUnsigned(newCapacity, MAX_BUFFER_SIZE) > 0) { newCapacity = createPositiveCapacity(minCapacity); } final byte[] b = new byte[newCapacity]; System.arraycopy(context.buffer, 0, b, 0, context.buffer.length); context.buffer = b; return b; } /** * @deprecated Use {@link #pad}. Will be removed in 2.0. */ @Deprecated protected final byte PAD = PAD_DEFAULT; // instance variable just in case it needs to vary later protected final byte pad; // instance variable just in case it needs to vary later /** * Number of bytes in each full block of unencoded data, e.g. 4 for Base64 and 5 * for Base32 */ private final int unencodedBlockSize; /** * Number of bytes in each full block of encoded data, e.g. 3 for Base64 and 8 * for Base32 */ private final int encodedBlockSize; /** * Chunksize for encoding. Not used when decoding. A value of zero or less * implies no chunking of the encoded data. Rounded down to nearest multiple of * encodedBlockSize. */ protected final int lineLength; /** * Size of chunk separator. Not used unless {@link #lineLength} > 0. */ private final int chunkSeparatorLength; /** * Defines the decoding behavior when the input bytes contain leftover trailing * bits that cannot be created by a valid encoding. These can be bits that are * unused from the final character or entire characters. The default mode is * lenient decoding. Set this to {@code true} to enable strict decoding. * * *

* When strict decoding is enabled it is expected that the decoded bytes will be * re-encoded to a byte array that matches the original, i.e. no changes occur * on the final character. This requires that the input bytes use the same * padding and alphabet as the encoder. */ private final CodecPolicy decodingPolicy; /** * Note {@code lineLength} is rounded down to the nearest multiple of the * encoded block size. If {@code chunkSeparatorLength} is zero, then chunking is * disabled. * * @param unencodedBlockSize the size of an unencoded block (e.g. Base64 = 3) * @param encodedBlockSize the size of an encoded block (e.g. Base64 = 4) * @param lineLength if > 0, use chunking with a length * {@code lineLength} * @param chunkSeparatorLength the chunk separator length, if relevant */ protected BaseNCodec(final int unencodedBlockSize, final int encodedBlockSize, final int lineLength, final int chunkSeparatorLength) { this(unencodedBlockSize, encodedBlockSize, lineLength, chunkSeparatorLength, PAD_DEFAULT); } /** * Note {@code lineLength} is rounded down to the nearest multiple of the * encoded block size. If {@code chunkSeparatorLength} is zero, then chunking is * disabled. * * @param unencodedBlockSize the size of an unencoded block (e.g. Base64 = 3) * @param encodedBlockSize the size of an encoded block (e.g. Base64 = 4) * @param lineLength if > 0, use chunking with a length * {@code lineLength} * @param chunkSeparatorLength the chunk separator length, if relevant * @param pad byte used as padding byte. */ protected BaseNCodec(final int unencodedBlockSize, final int encodedBlockSize, final int lineLength, final int chunkSeparatorLength, final byte pad) { this(unencodedBlockSize, encodedBlockSize, lineLength, chunkSeparatorLength, pad, CodecPolicy.LENIANT); } /** * Note {@code lineLength} is rounded down to the nearest multiple of the * encoded block size. If {@code chunkSeparatorLength} is zero, then chunking is * disabled. * * @param unencodedBlockSize the size of an unencoded block (e.g. Base64 = 3) * @param encodedBlockSize the size of an encoded block (e.g. Base64 = 4) * @param lineLength if > 0, use chunking with a length * {@code lineLength} * @param chunkSeparatorLength the chunk separator length, if relevant * @param pad byte used as padding byte. * @param decodingPolicy Decoding policy. * @since 1.15 */ protected BaseNCodec(final int unencodedBlockSize, final int encodedBlockSize, final int lineLength, final int chunkSeparatorLength, final byte pad, final CodecPolicy decodingPolicy) { this.unencodedBlockSize = unencodedBlockSize; this.encodedBlockSize = encodedBlockSize; final boolean useChunking = lineLength > 0 && chunkSeparatorLength > 0; this.lineLength = useChunking ? (lineLength / encodedBlockSize) * encodedBlockSize : 0; this.chunkSeparatorLength = chunkSeparatorLength; this.pad = pad; this.decodingPolicy = decodingPolicy; } /** * Returns the amount of buffered data available for reading. * * @param context the context to be used * @return The amount of buffered data available for reading. */ int available(final Context context) { // package protected for access from I/O streams return context.buffer != null ? context.pos - context.readPos : 0; } /** * Tests a given byte array to see if it contains any characters within the * alphabet or PAD. * * Intended for use in checking line-ending arrays * * @param arrayOctet byte array to test * @return {@code true} if any byte is a valid character in the alphabet or PAD; * {@code false} otherwise */ protected boolean containsAlphabetOrPad(final byte[] arrayOctet) { if (arrayOctet == null) { return false; } for (final byte element : arrayOctet) { if (pad == element || isInAlphabet(element)) { return true; } } return false; } /** * Decodes a byte[] containing characters in the Base-N alphabet. * * @param pArray A byte array containing Base-N character data * @return a byte array containing binary data */ public byte[] decode(final byte[] pArray) { if (pArray == null || pArray.length == 0) { return pArray; } final Context context = new Context(); decode(pArray, 0, pArray.length, context); decode(pArray, 0, EOF, context); // Notify decoder of EOF. final byte[] result = new byte[context.pos]; readResults(result, 0, result.length, context); return result; } // package protected for access from I/O streams abstract void decode(byte[] pArray, int i, int length, Context context); /** * Decodes an Object using the Base-N algorithm. This method is provided in * order to satisfy the requirements of the Decoder interface, and will throw a * DecoderException if the supplied object is not of type byte[] or String. * * @param obj Object to decode * @return An object (of type byte[]) containing the binary data which * corresponds to the byte[] or String supplied. * @throws DecoderException if the parameter supplied is not of type byte[] */ public Object decode(final Object obj) { if (obj instanceof byte[]) { return decode((byte[]) obj); } else if (obj instanceof String) { return decode((String) obj); } else { return null; } } /** * Decodes a String containing characters in the Base-N alphabet. * * @param pArray A String containing Base-N character data * @return a byte array containing binary data */ public byte[] decode(final String pArray) { return decode(pArray.getBytes(Charset.forName("UTF-8"))); } /** * Encodes a byte[] containing binary data, into a byte[] containing characters * in the alphabet. * * @param pArray a byte array containing binary data * @return A byte array containing only the base N alphabetic character data */ public byte[] encode(final byte[] pArray) { if (pArray == null || pArray.length == 0) { return pArray; } return encode(pArray, 0, pArray.length); } /** * Encodes a byte[] containing binary data, into a byte[] containing characters * in the alphabet. * * @param pArray a byte array containing binary data * @param offset initial offset of the subarray. * @param length length of the subarray. * @return A byte array containing only the base N alphabetic character data * @since 1.11 */ public byte[] encode(final byte[] pArray, final int offset, final int length) { if (pArray == null || pArray.length == 0) { return pArray; } final Context context = new Context(); encode(pArray, offset, length, context); encode(pArray, offset, EOF, context); // Notify encoder of EOF. final byte[] buf = new byte[context.pos - context.readPos]; readResults(buf, 0, buf.length, context); return buf; } // package protected for access from I/O streams abstract void encode(byte[] pArray, int i, int length, Context context); /** * Encodes an Object using the Base-N algorithm. This method is provided in * order to satisfy the requirements of the Encoder interface, and will throw an * EncoderException if the supplied object is not of type byte[]. * * @param obj Object to encode * @return An object (of type byte[]) containing the Base-N encoded data which * corresponds to the byte[] supplied. * @throws EncoderException if the parameter supplied is not of type byte[] */ public Object encode(final Object obj) { return encode((byte[]) obj); } /** * Encodes a byte[] containing binary data, into a String containing characters * in the appropriate alphabet. Uses UTF8 encoding. * * @param pArray a byte array containing binary data * @return String containing only character data in the appropriate alphabet. * @since 1.5 This is a duplicate of {@link #encodeToString(byte[])}; it was * merged during refactoring. */ public String encodeAsString(final byte[] pArray) { return new String(encode(pArray), Charset.forName("UTF-8")); } /** * Encodes a byte[] containing binary data, into a String containing characters * in the Base-N alphabet. Uses UTF8 encoding. * * @param pArray a byte array containing binary data * @return A String containing only Base-N character data */ public String encodeToString(final byte[] pArray) { return new String(encode(pArray), Charset.forName("UTF-8")); } /** * Ensure that the buffer has room for {@code size} bytes * * @param size minimum spare space required * @param context the context to be used * @return the buffer */ protected byte[] ensureBufferSize(final int size, final Context context) { if (context.buffer == null) { context.buffer = new byte[Math.max(size, getDefaultBufferSize())]; context.pos = 0; context.readPos = 0; // Overflow-conscious: // x + y > z == x + y - z > 0 } else if (context.pos + size - context.buffer.length > 0) { return resizeBuffer(context, context.pos + size); } return context.buffer; } /** * Returns the decoding behavior policy. * *

* The default is lenient. If the decoding policy is strict, then decoding will * raise an {@link IllegalArgumentException} if trailing bits are not part of a * valid encoding. Decoding will compose trailing bits into 8-bit bytes and * discard the remainder. *

* * @return true if using strict decoding * @since 1.15 */ public CodecPolicy getCodecPolicy() { return decodingPolicy; } /** * Get the default buffer size. Can be overridden. * * @return the default buffer size. */ protected int getDefaultBufferSize() { return DEFAULT_BUFFER_SIZE; } /** * Calculates the amount of space needed to encode the supplied array. * * @param pArray byte[] array which will later be encoded * * @return amount of space needed to encoded the supplied array. Returns a long * since a max-len array will require > Integer.MAX_VALUE */ public long getEncodedLength(final byte[] pArray) { // Calculate non-chunked size - rounded up to allow for padding // cast to long is needed to avoid possibility of overflow long len = ((pArray.length + unencodedBlockSize - 1) / unencodedBlockSize) * (long) encodedBlockSize; if (lineLength > 0) { // We're using chunking // Round up to nearest multiple len += ((len + lineLength - 1) / lineLength) * chunkSeparatorLength; } return len; } /** * Returns true if this object has buffered data for reading. * * @param context the context to be used * @return true if there is data still available for reading. */ boolean hasData(final Context context) { // package protected for access from I/O streams return context.buffer != null; } /** * Returns whether or not the {@code octet} is in the current alphabet. Does not * allow whitespace or pad. * * @param value The value to test * * @return {@code true} if the value is defined in the current alphabet, * {@code false} otherwise. */ protected abstract boolean isInAlphabet(byte value); /** * Tests a given byte array to see if it contains only valid characters within * the alphabet. The method optionally treats whitespace and pad as valid. * * @param arrayOctet byte array to test * @param allowWSPad if {@code true}, then whitespace and PAD are also allowed * * @return {@code true} if all bytes are valid characters in the alphabet or if * the byte array is empty; {@code false}, otherwise */ public boolean isInAlphabet(final byte[] arrayOctet, final boolean allowWSPad) { for (final byte octet : arrayOctet) { if (!isInAlphabet(octet) && (!allowWSPad || (octet != pad) && !isWhiteSpace(octet))) { return false; } } return true; } /** * Tests a given String to see if it contains only valid characters within the * alphabet. The method treats whitespace and PAD as valid. * * @param basen String to test * @return {@code true} if all characters in the String are valid characters in * the alphabet or if the String is empty; {@code false}, otherwise * @see #isInAlphabet(byte[], boolean) */ public boolean isInAlphabet(final String basen) { return isInAlphabet(basen.getBytes(Charset.forName("UTF-8")), true); } /** * Returns true if decoding behavior is strict. Decoding will raise an * {@link IllegalArgumentException} if trailing bits are not part of a valid * encoding. * *

* The default is false for lenient decoding. Decoding will compose trailing * bits into 8-bit bytes and discard the remainder. *

* * @return true if using strict decoding * @since 1.15 */ public boolean isStrictDecoding() { return decodingPolicy == CodecPolicy.STRICT; } /** * Extracts buffered data into the provided byte[] array, starting at position * bPos, up to a maximum of bAvail bytes. Returns how many bytes were actually * extracted. *

* Package protected for access from I/O streams. * * @param b byte[] array to extract the buffered data into. * @param bPos position in byte[] array to start extraction at. * @param bAvail amount of bytes we're allowed to extract. We may extract fewer * (if fewer are available). * @param context the context to be used * @return The number of bytes successfully extracted into the provided byte[] * array. */ int readResults(final byte[] b, final int bPos, final int bAvail, final Context context) { if (context.buffer != null) { final int len = Math.min(available(context), bAvail); System.arraycopy(context.buffer, context.readPos, b, bPos, len); context.readPos += len; if (context.readPos >= context.pos) { context.buffer = null; // so hasData() will return false, and this method can return -1 } return len; } return context.eof ? EOF : 0; } }