eaglercraft-1.8/sources/teavm/java/com/jcraft/jorbis/DspState.java

370 lines
10 KiB
Java

/* -*-mode:java; c-basic-offset:2; indent-tabs-mode:nil -*- */
/* JOrbis
* Copyright (C) 2000 ymnk, JCraft,Inc.
*
* Written by: 2000 ymnk<ymnk@jcraft.com>
*
* Many thanks to
* Monty <monty@xiph.org> and
* The XIPHOPHORUS Company http://www.xiph.org/ .
* JOrbis has been based on their awesome works, Vorbis codec.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public License
* as published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
package com.jcraft.jorbis;
public class DspState {
static final float M_PI = 3.1415926539f;
static final int VI_TRANSFORMB = 1;
static final int VI_WINDOWB = 1;
int analysisp;
Info vi;
int modebits;
float[][] pcm;
int pcm_storage;
int pcm_current;
int pcm_returned;
float[] multipliers;
int envelope_storage;
int envelope_current;
int eofflag;
int lW;
int W;
int nW;
int centerW;
long granulepos;
long sequence;
long glue_bits;
long time_bits;
long floor_bits;
long res_bits;
// local lookup storage
float[][][][][] window; // block, leadin, leadout, type
Object[][] transform;
CodeBook[] fullbooks;
// backend lookups are tied to the mode, not the backend or naked mapping
Object[] mode;
// local storage, only used on the encoding side. This way the
// application does not need to worry about freeing some packets'
// memory and not others'; packet storage is always tracked.
// Cleared next call to a _dsp_ function
byte[] header;
byte[] header1;
byte[] header2;
public DspState() {
transform = new Object[2][];
window = new float[2][][][][];
window[0] = new float[2][][][];
window[0][0] = new float[2][][];
window[0][1] = new float[2][][];
window[0][0][0] = new float[2][];
window[0][0][1] = new float[2][];
window[0][1][0] = new float[2][];
window[0][1][1] = new float[2][];
window[1] = new float[2][][][];
window[1][0] = new float[2][][];
window[1][1] = new float[2][][];
window[1][0][0] = new float[2][];
window[1][0][1] = new float[2][];
window[1][1][0] = new float[2][];
window[1][1][1] = new float[2][];
}
static float[] window(int type, int window, int left, int right) {
float[] ret = new float[window];
switch (type) {
case 0:
// The 'vorbis window' (window 0) is sin(sin(x)*sin(x)*2pi)
{
int leftbegin = window / 4 - left / 2;
int rightbegin = window - window / 4 - right / 2;
for (int i = 0; i < left; i++) {
float x = (float) ((i + .5) / left * M_PI / 2.);
x = (float) Math.sin(x);
x *= x;
x *= M_PI / 2.;
x = (float) Math.sin(x);
ret[i + leftbegin] = x;
}
for (int i = leftbegin + left; i < rightbegin; i++) {
ret[i] = 1.f;
}
for (int i = 0; i < right; i++) {
float x = (float) ((right - i - .5) / right * M_PI / 2.);
x = (float) Math.sin(x);
x *= x;
x *= M_PI / 2.;
x = (float) Math.sin(x);
ret[i + rightbegin] = x;
}
}
break;
default:
// free(ret);
return (null);
}
return (ret);
}
// Analysis side code, but directly related to blocking. Thus it's
// here and not in analysis.c (which is for analysis transforms only).
// The init is here because some of it is shared
int init(Info vi, boolean encp) {
this.vi = vi;
modebits = Util.ilog2(vi.modes);
transform[0] = new Object[VI_TRANSFORMB];
transform[1] = new Object[VI_TRANSFORMB];
// MDCT is tranform 0
transform[0][0] = new Mdct();
transform[1][0] = new Mdct();
((Mdct) transform[0][0]).init(vi.blocksizes[0]);
((Mdct) transform[1][0]).init(vi.blocksizes[1]);
window[0][0][0] = new float[VI_WINDOWB][];
window[0][0][1] = window[0][0][0];
window[0][1][0] = window[0][0][0];
window[0][1][1] = window[0][0][0];
window[1][0][0] = new float[VI_WINDOWB][];
window[1][0][1] = new float[VI_WINDOWB][];
window[1][1][0] = new float[VI_WINDOWB][];
window[1][1][1] = new float[VI_WINDOWB][];
for (int i = 0; i < VI_WINDOWB; i++) {
window[0][0][0][i] = window(i, vi.blocksizes[0], vi.blocksizes[0] / 2, vi.blocksizes[0] / 2);
window[1][0][0][i] = window(i, vi.blocksizes[1], vi.blocksizes[0] / 2, vi.blocksizes[0] / 2);
window[1][0][1][i] = window(i, vi.blocksizes[1], vi.blocksizes[0] / 2, vi.blocksizes[1] / 2);
window[1][1][0][i] = window(i, vi.blocksizes[1], vi.blocksizes[1] / 2, vi.blocksizes[0] / 2);
window[1][1][1][i] = window(i, vi.blocksizes[1], vi.blocksizes[1] / 2, vi.blocksizes[1] / 2);
}
fullbooks = new CodeBook[vi.books];
for (int i = 0; i < vi.books; i++) {
fullbooks[i] = new CodeBook();
fullbooks[i].init_decode(vi.book_param[i]);
}
// initialize the storage vectors to a decent size greater than the
// minimum
pcm_storage = 8192; // we'll assume later that we have
// a minimum of twice the blocksize of
// accumulated samples in analysis
pcm = new float[vi.channels][];
{
for (int i = 0; i < vi.channels; i++) {
pcm[i] = new float[pcm_storage];
}
}
// all 1 (large block) or 0 (small block)
// explicitly set for the sake of clarity
lW = 0; // previous window size
W = 0; // current window size
// all vector indexes; multiples of samples_per_envelope_step
centerW = vi.blocksizes[1] / 2;
pcm_current = centerW;
// initialize all the mapping/backend lookups
mode = new Object[vi.modes];
for (int i = 0; i < vi.modes; i++) {
int mapnum = vi.mode_param[i].mapping;
int maptype = vi.map_type[mapnum];
mode[i] = FuncMapping.mapping_P[maptype].look(this, vi.mode_param[i], vi.map_param[mapnum]);
}
return (0);
}
public int synthesis_init(Info vi) {
init(vi, false);
// Adjust centerW to allow an easier mechanism for determining output
pcm_returned = centerW;
centerW -= vi.blocksizes[W] / 4 + vi.blocksizes[lW] / 4;
granulepos = -1;
sequence = -1;
return (0);
}
DspState(Info vi) {
this();
init(vi, false);
// Adjust centerW to allow an easier mechanism for determining output
pcm_returned = centerW;
centerW -= vi.blocksizes[W] / 4 + vi.blocksizes[lW] / 4;
granulepos = -1;
sequence = -1;
}
// Unike in analysis, the window is only partially applied for each
// block. The time domain envelope is not yet handled at the point of
// calling (as it relies on the previous block).
public int synthesis_blockin(Block vb) {
// Shift out any PCM/multipliers that we returned previously
// centerW is currently the center of the last block added
if (centerW > vi.blocksizes[1] / 2 && pcm_returned > 8192) {
// don't shift too much; we need to have a minimum PCM buffer of
// 1/2 long block
int shiftPCM = centerW - vi.blocksizes[1] / 2;
shiftPCM = (pcm_returned < shiftPCM ? pcm_returned : shiftPCM);
pcm_current -= shiftPCM;
centerW -= shiftPCM;
pcm_returned -= shiftPCM;
if (shiftPCM != 0) {
for (int i = 0; i < vi.channels; i++) {
System.arraycopy(pcm[i], shiftPCM, pcm[i], 0, pcm_current);
}
}
}
lW = W;
W = vb.W;
nW = -1;
glue_bits += vb.glue_bits;
time_bits += vb.time_bits;
floor_bits += vb.floor_bits;
res_bits += vb.res_bits;
if (sequence + 1 != vb.sequence)
granulepos = -1; // out of sequence; lose count
sequence = vb.sequence;
{
int sizeW = vi.blocksizes[W];
int _centerW = centerW + vi.blocksizes[lW] / 4 + sizeW / 4;
int beginW = _centerW - sizeW / 2;
int endW = beginW + sizeW;
int beginSl = 0;
int endSl = 0;
// Do we have enough PCM/mult storage for the block?
if (endW > pcm_storage) {
// expand the storage
pcm_storage = endW + vi.blocksizes[1];
for (int i = 0; i < vi.channels; i++) {
float[] foo = new float[pcm_storage];
System.arraycopy(pcm[i], 0, foo, 0, pcm[i].length);
pcm[i] = foo;
}
}
// overlap/add PCM
switch (W) {
case 0:
beginSl = 0;
endSl = vi.blocksizes[0] / 2;
break;
case 1:
beginSl = vi.blocksizes[1] / 4 - vi.blocksizes[lW] / 4;
endSl = beginSl + vi.blocksizes[lW] / 2;
break;
}
for (int j = 0; j < vi.channels; j++) {
int _pcm = beginW;
// the overlap/add section
int i = 0;
for (i = beginSl; i < endSl; i++) {
pcm[j][_pcm + i] += vb.pcm[j][i];
}
// the remaining section
for (; i < sizeW; i++) {
pcm[j][_pcm + i] = vb.pcm[j][i];
}
}
// track the frame number... This is for convenience, but also
// making sure our last packet doesn't end with added padding. If
// the last packet is partial, the number of samples we'll have to
// return will be past the vb->granulepos.
//
// This is not foolproof! It will be confused if we begin
// decoding at the last page after a seek or hole. In that case,
// we don't have a starting point to judge where the last frame
// is. For this reason, vorbisfile will always try to make sure
// it reads the last two marked pages in proper sequence
if (granulepos == -1) {
granulepos = vb.granulepos;
} else {
granulepos += (_centerW - centerW);
if (vb.granulepos != -1 && granulepos != vb.granulepos) {
if (granulepos > vb.granulepos && vb.eofflag != 0) {
// partial last frame. Strip the padding off
_centerW -= (granulepos - vb.granulepos);
} // else{ Shouldn't happen *unless* the bitstream is out of
// spec. Either way, believe the bitstream }
granulepos = vb.granulepos;
}
}
// Update, cleanup
centerW = _centerW;
pcm_current = endW;
if (vb.eofflag != 0)
eofflag = 1;
}
return (0);
}
// pcm==NULL indicates we just want the pending samples, no more
public int synthesis_pcmout(float[][][] _pcm, int[] index) {
if (pcm_returned < centerW) {
if (_pcm != null) {
for (int i = 0; i < vi.channels; i++) {
index[i] = pcm_returned;
}
_pcm[0] = pcm;
}
return (centerW - pcm_returned);
}
return (0);
}
public int synthesis_read(int bytes) {
if (bytes != 0 && pcm_returned + bytes > centerW)
return (-1);
pcm_returned += bytes;
return (0);
}
public void clear() {
}
}