eaglercraft-1.8/sources/main/java/com/google/common/collect/TreeMultiset.java
2022-12-25 01:12:28 -08:00

990 lines
27 KiB
Java

/*
* Copyright (C) 2007 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import static com.google.common.collect.CollectPreconditions.checkRemove;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.NoSuchElementException;
import javax.annotation.Nullable;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Objects;
import com.google.common.primitives.Ints;
/**
* A multiset which maintains the ordering of its elements, according to either
* their natural order or an explicit {@link Comparator}. In all cases, this
* implementation uses {@link Comparable#compareTo} or
* {@link Comparator#compare} instead of {@link Object#equals} to determine
* equivalence of instances.
*
* <p>
* <b>Warning:</b> The comparison must be <i>consistent with equals</i> as
* explained by the {@link Comparable} class specification. Otherwise, the
* resulting multiset will violate the {@link java.util.Collection} contract,
* which is specified in terms of {@link Object#equals}.
*
* <p>
* See the Guava User Guide article on <a href=
* "http://code.google.com/p/guava-libraries/wiki/NewCollectionTypesExplained#Multiset">
* {@code Multiset}</a>.
*
* @author Louis Wasserman
* @author Jared Levy
* @since 2.0 (imported from Google Collections Library)
*/
@GwtCompatible(emulated = true)
public final class TreeMultiset<E> extends AbstractSortedMultiset<E> implements Serializable {
/**
* Creates a new, empty multiset, sorted according to the elements' natural
* order. All elements inserted into the multiset must implement the
* {@code Comparable} interface. Furthermore, all such elements must be
* <i>mutually comparable</i>: {@code e1.compareTo(e2)} must not throw a
* {@code ClassCastException} for any elements {@code e1} and {@code e2} in the
* multiset. If the user attempts to add an element to the multiset that
* violates this constraint (for example, the user attempts to add a string
* element to a set whose elements are integers), the {@code add(Object)} call
* will throw a {@code ClassCastException}.
*
* <p>
* The type specification is {@code <E extends Comparable>}, instead of the more
* specific {@code <E extends Comparable<? super E>>}, to support classes
* defined without generics.
*/
public static <E extends Comparable> TreeMultiset<E> create() {
return new TreeMultiset<E>(Ordering.natural());
}
/**
* Creates a new, empty multiset, sorted according to the specified comparator.
* All elements inserted into the multiset must be <i>mutually comparable</i> by
* the specified comparator: {@code comparator.compare(e1,
* e2)} must not throw a {@code ClassCastException} for any elements {@code e1}
* and {@code e2} in the multiset. If the user attempts to add an element to the
* multiset that violates this constraint, the {@code add(Object)} call will
* throw a {@code ClassCastException}.
*
* @param comparator the comparator that will be used to sort this multiset. A
* null value indicates that the elements' <i>natural
* ordering</i> should be used.
*/
@SuppressWarnings("unchecked")
public static <E> TreeMultiset<E> create(@Nullable Comparator<? super E> comparator) {
return (comparator == null) ? new TreeMultiset<E>((Comparator) Ordering.natural())
: new TreeMultiset<E>(comparator);
}
/**
* Creates an empty multiset containing the given initial elements, sorted
* according to the elements' natural order.
*
* <p>
* This implementation is highly efficient when {@code elements} is itself a
* {@link Multiset}.
*
* <p>
* The type specification is {@code <E extends Comparable>}, instead of the more
* specific {@code <E extends Comparable<? super E>>}, to support classes
* defined without generics.
*/
public static <E extends Comparable> TreeMultiset<E> create(Iterable<? extends E> elements) {
TreeMultiset<E> multiset = create();
Iterables.addAll(multiset, elements);
return multiset;
}
private final transient Reference<AvlNode<E>> rootReference;
private final transient GeneralRange<E> range;
private final transient AvlNode<E> header;
TreeMultiset(Reference<AvlNode<E>> rootReference, GeneralRange<E> range, AvlNode<E> endLink) {
super(range.comparator());
this.rootReference = rootReference;
this.range = range;
this.header = endLink;
}
TreeMultiset(Comparator<? super E> comparator) {
super(comparator);
this.range = GeneralRange.all(comparator);
this.header = new AvlNode<E>(null, 1);
successor(header, header);
this.rootReference = new Reference<AvlNode<E>>();
}
/**
* A function which can be summed across a subtree.
*/
private enum Aggregate {
SIZE {
@Override
int nodeAggregate(AvlNode<?> node) {
return node.elemCount;
}
@Override
long treeAggregate(@Nullable AvlNode<?> root) {
return (root == null) ? 0 : root.totalCount;
}
},
DISTINCT {
@Override
int nodeAggregate(AvlNode<?> node) {
return 1;
}
@Override
long treeAggregate(@Nullable AvlNode<?> root) {
return (root == null) ? 0 : root.distinctElements;
}
};
abstract int nodeAggregate(AvlNode<?> node);
abstract long treeAggregate(@Nullable AvlNode<?> root);
}
private long aggregateForEntries(Aggregate aggr) {
AvlNode<E> root = rootReference.get();
long total = aggr.treeAggregate(root);
if (range.hasLowerBound()) {
total -= aggregateBelowRange(aggr, root);
}
if (range.hasUpperBound()) {
total -= aggregateAboveRange(aggr, root);
}
return total;
}
private long aggregateBelowRange(Aggregate aggr, @Nullable AvlNode<E> node) {
if (node == null) {
return 0;
}
int cmp = comparator().compare(range.getLowerEndpoint(), node.elem);
if (cmp < 0) {
return aggregateBelowRange(aggr, node.left);
} else if (cmp == 0) {
switch (range.getLowerBoundType()) {
case OPEN:
return aggr.nodeAggregate(node) + aggr.treeAggregate(node.left);
case CLOSED:
return aggr.treeAggregate(node.left);
default:
throw new AssertionError();
}
} else {
return aggr.treeAggregate(node.left) + aggr.nodeAggregate(node) + aggregateBelowRange(aggr, node.right);
}
}
private long aggregateAboveRange(Aggregate aggr, @Nullable AvlNode<E> node) {
if (node == null) {
return 0;
}
int cmp = comparator().compare(range.getUpperEndpoint(), node.elem);
if (cmp > 0) {
return aggregateAboveRange(aggr, node.right);
} else if (cmp == 0) {
switch (range.getUpperBoundType()) {
case OPEN:
return aggr.nodeAggregate(node) + aggr.treeAggregate(node.right);
case CLOSED:
return aggr.treeAggregate(node.right);
default:
throw new AssertionError();
}
} else {
return aggr.treeAggregate(node.right) + aggr.nodeAggregate(node) + aggregateAboveRange(aggr, node.left);
}
}
@Override
public int size() {
return Ints.saturatedCast(aggregateForEntries(Aggregate.SIZE));
}
@Override
int distinctElements() {
return Ints.saturatedCast(aggregateForEntries(Aggregate.DISTINCT));
}
@Override
public int count(@Nullable Object element) {
try {
@SuppressWarnings("unchecked")
E e = (E) element;
AvlNode<E> root = rootReference.get();
if (!range.contains(e) || root == null) {
return 0;
}
return root.count(comparator(), e);
} catch (ClassCastException e) {
return 0;
} catch (NullPointerException e) {
return 0;
}
}
@Override
public int add(@Nullable E element, int occurrences) {
checkNonnegative(occurrences, "occurrences");
if (occurrences == 0) {
return count(element);
}
checkArgument(range.contains(element));
AvlNode<E> root = rootReference.get();
if (root == null) {
comparator().compare(element, element);
AvlNode<E> newRoot = new AvlNode<E>(element, occurrences);
successor(header, newRoot, header);
rootReference.checkAndSet(root, newRoot);
return 0;
}
int[] result = new int[1]; // used as a mutable int reference to hold result
AvlNode<E> newRoot = root.add(comparator(), element, occurrences, result);
rootReference.checkAndSet(root, newRoot);
return result[0];
}
@Override
public int remove(@Nullable Object element, int occurrences) {
checkNonnegative(occurrences, "occurrences");
if (occurrences == 0) {
return count(element);
}
AvlNode<E> root = rootReference.get();
int[] result = new int[1]; // used as a mutable int reference to hold result
AvlNode<E> newRoot;
try {
@SuppressWarnings("unchecked")
E e = (E) element;
if (!range.contains(e) || root == null) {
return 0;
}
newRoot = root.remove(comparator(), e, occurrences, result);
} catch (ClassCastException e) {
return 0;
} catch (NullPointerException e) {
return 0;
}
rootReference.checkAndSet(root, newRoot);
return result[0];
}
@Override
public int setCount(@Nullable E element, int count) {
checkNonnegative(count, "count");
if (!range.contains(element)) {
checkArgument(count == 0);
return 0;
}
AvlNode<E> root = rootReference.get();
if (root == null) {
if (count > 0) {
add(element, count);
}
return 0;
}
int[] result = new int[1]; // used as a mutable int reference to hold result
AvlNode<E> newRoot = root.setCount(comparator(), element, count, result);
rootReference.checkAndSet(root, newRoot);
return result[0];
}
@Override
public boolean setCount(@Nullable E element, int oldCount, int newCount) {
checkNonnegative(newCount, "newCount");
checkNonnegative(oldCount, "oldCount");
checkArgument(range.contains(element));
AvlNode<E> root = rootReference.get();
if (root == null) {
if (oldCount == 0) {
if (newCount > 0) {
add(element, newCount);
}
return true;
} else {
return false;
}
}
int[] result = new int[1]; // used as a mutable int reference to hold result
AvlNode<E> newRoot = root.setCount(comparator(), element, oldCount, newCount, result);
rootReference.checkAndSet(root, newRoot);
return result[0] == oldCount;
}
private Entry<E> wrapEntry(final AvlNode<E> baseEntry) {
return new Multisets.AbstractEntry<E>() {
@Override
public E getElement() {
return baseEntry.getElement();
}
@Override
public int getCount() {
int result = baseEntry.getCount();
if (result == 0) {
return count(getElement());
} else {
return result;
}
}
};
}
/**
* Returns the first node in the tree that is in range.
*/
@Nullable
private AvlNode<E> firstNode() {
AvlNode<E> root = rootReference.get();
if (root == null) {
return null;
}
AvlNode<E> node;
if (range.hasLowerBound()) {
E endpoint = range.getLowerEndpoint();
node = rootReference.get().ceiling(comparator(), endpoint);
if (node == null) {
return null;
}
if (range.getLowerBoundType() == BoundType.OPEN && comparator().compare(endpoint, node.getElement()) == 0) {
node = node.succ;
}
} else {
node = header.succ;
}
return (node == header || !range.contains(node.getElement())) ? null : node;
}
@Nullable
private AvlNode<E> lastNode() {
AvlNode<E> root = rootReference.get();
if (root == null) {
return null;
}
AvlNode<E> node;
if (range.hasUpperBound()) {
E endpoint = range.getUpperEndpoint();
node = rootReference.get().floor(comparator(), endpoint);
if (node == null) {
return null;
}
if (range.getUpperBoundType() == BoundType.OPEN && comparator().compare(endpoint, node.getElement()) == 0) {
node = node.pred;
}
} else {
node = header.pred;
}
return (node == header || !range.contains(node.getElement())) ? null : node;
}
@Override
Iterator<Entry<E>> entryIterator() {
return new Iterator<Entry<E>>() {
AvlNode<E> current = firstNode();
Entry<E> prevEntry;
@Override
public boolean hasNext() {
if (current == null) {
return false;
} else if (range.tooHigh(current.getElement())) {
current = null;
return false;
} else {
return true;
}
}
@Override
public Entry<E> next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
Entry<E> result = wrapEntry(current);
prevEntry = result;
if (current.succ == header) {
current = null;
} else {
current = current.succ;
}
return result;
}
@Override
public void remove() {
checkRemove(prevEntry != null);
setCount(prevEntry.getElement(), 0);
prevEntry = null;
}
};
}
@Override
Iterator<Entry<E>> descendingEntryIterator() {
return new Iterator<Entry<E>>() {
AvlNode<E> current = lastNode();
Entry<E> prevEntry = null;
@Override
public boolean hasNext() {
if (current == null) {
return false;
} else if (range.tooLow(current.getElement())) {
current = null;
return false;
} else {
return true;
}
}
@Override
public Entry<E> next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
Entry<E> result = wrapEntry(current);
prevEntry = result;
if (current.pred == header) {
current = null;
} else {
current = current.pred;
}
return result;
}
@Override
public void remove() {
checkRemove(prevEntry != null);
setCount(prevEntry.getElement(), 0);
prevEntry = null;
}
};
}
@Override
public SortedMultiset<E> headMultiset(@Nullable E upperBound, BoundType boundType) {
return new TreeMultiset<E>(rootReference,
range.intersect(GeneralRange.upTo(comparator(), upperBound, boundType)), header);
}
@Override
public SortedMultiset<E> tailMultiset(@Nullable E lowerBound, BoundType boundType) {
return new TreeMultiset<E>(rootReference,
range.intersect(GeneralRange.downTo(comparator(), lowerBound, boundType)), header);
}
static int distinctElements(@Nullable AvlNode<?> node) {
return (node == null) ? 0 : node.distinctElements;
}
private static final class Reference<T> {
@Nullable
private T value;
@Nullable
public T get() {
return value;
}
public void checkAndSet(@Nullable T expected, T newValue) {
if (value != expected) {
throw new ConcurrentModificationException();
}
value = newValue;
}
}
private static final class AvlNode<E> extends Multisets.AbstractEntry<E> {
@Nullable
private final E elem;
// elemCount is 0 iff this node has been deleted.
private int elemCount;
private int distinctElements;
private long totalCount;
private int height;
private AvlNode<E> left;
private AvlNode<E> right;
private AvlNode<E> pred;
private AvlNode<E> succ;
AvlNode(@Nullable E elem, int elemCount) {
checkArgument(elemCount > 0);
this.elem = elem;
this.elemCount = elemCount;
this.totalCount = elemCount;
this.distinctElements = 1;
this.height = 1;
this.left = null;
this.right = null;
}
public int count(Comparator<? super E> comparator, E e) {
int cmp = comparator.compare(e, elem);
if (cmp < 0) {
return (left == null) ? 0 : left.count(comparator, e);
} else if (cmp > 0) {
return (right == null) ? 0 : right.count(comparator, e);
} else {
return elemCount;
}
}
private AvlNode<E> addRightChild(E e, int count) {
right = new AvlNode<E>(e, count);
successor(this, right, succ);
height = Math.max(2, height);
distinctElements++;
totalCount += count;
return this;
}
private AvlNode<E> addLeftChild(E e, int count) {
left = new AvlNode<E>(e, count);
successor(pred, left, this);
height = Math.max(2, height);
distinctElements++;
totalCount += count;
return this;
}
AvlNode<E> add(Comparator<? super E> comparator, @Nullable E e, int count, int[] result) {
/*
* It speeds things up considerably to unconditionally add count to totalCount
* here, but that destroys failure atomicity in the case of count overflow. =(
*/
int cmp = comparator.compare(e, elem);
if (cmp < 0) {
AvlNode<E> initLeft = left;
if (initLeft == null) {
result[0] = 0;
return addLeftChild(e, count);
}
int initHeight = initLeft.height;
left = initLeft.add(comparator, e, count, result);
if (result[0] == 0) {
distinctElements++;
}
this.totalCount += count;
return (left.height == initHeight) ? this : rebalance();
} else if (cmp > 0) {
AvlNode<E> initRight = right;
if (initRight == null) {
result[0] = 0;
return addRightChild(e, count);
}
int initHeight = initRight.height;
right = initRight.add(comparator, e, count, result);
if (result[0] == 0) {
distinctElements++;
}
this.totalCount += count;
return (right.height == initHeight) ? this : rebalance();
}
// adding count to me! No rebalance possible.
result[0] = elemCount;
long resultCount = (long) elemCount + count;
checkArgument(resultCount <= Integer.MAX_VALUE);
this.elemCount += count;
this.totalCount += count;
return this;
}
AvlNode<E> remove(Comparator<? super E> comparator, @Nullable E e, int count, int[] result) {
int cmp = comparator.compare(e, elem);
if (cmp < 0) {
AvlNode<E> initLeft = left;
if (initLeft == null) {
result[0] = 0;
return this;
}
left = initLeft.remove(comparator, e, count, result);
if (result[0] > 0) {
if (count >= result[0]) {
this.distinctElements--;
this.totalCount -= result[0];
} else {
this.totalCount -= count;
}
}
return (result[0] == 0) ? this : rebalance();
} else if (cmp > 0) {
AvlNode<E> initRight = right;
if (initRight == null) {
result[0] = 0;
return this;
}
right = initRight.remove(comparator, e, count, result);
if (result[0] > 0) {
if (count >= result[0]) {
this.distinctElements--;
this.totalCount -= result[0];
} else {
this.totalCount -= count;
}
}
return rebalance();
}
// removing count from me!
result[0] = elemCount;
if (count >= elemCount) {
return deleteMe();
} else {
this.elemCount -= count;
this.totalCount -= count;
return this;
}
}
AvlNode<E> setCount(Comparator<? super E> comparator, @Nullable E e, int count, int[] result) {
int cmp = comparator.compare(e, elem);
if (cmp < 0) {
AvlNode<E> initLeft = left;
if (initLeft == null) {
result[0] = 0;
return (count > 0) ? addLeftChild(e, count) : this;
}
left = initLeft.setCount(comparator, e, count, result);
if (count == 0 && result[0] != 0) {
this.distinctElements--;
} else if (count > 0 && result[0] == 0) {
this.distinctElements++;
}
this.totalCount += count - result[0];
return rebalance();
} else if (cmp > 0) {
AvlNode<E> initRight = right;
if (initRight == null) {
result[0] = 0;
return (count > 0) ? addRightChild(e, count) : this;
}
right = initRight.setCount(comparator, e, count, result);
if (count == 0 && result[0] != 0) {
this.distinctElements--;
} else if (count > 0 && result[0] == 0) {
this.distinctElements++;
}
this.totalCount += count - result[0];
return rebalance();
}
// setting my count
result[0] = elemCount;
if (count == 0) {
return deleteMe();
}
this.totalCount += count - elemCount;
this.elemCount = count;
return this;
}
AvlNode<E> setCount(Comparator<? super E> comparator, @Nullable E e, int expectedCount, int newCount,
int[] result) {
int cmp = comparator.compare(e, elem);
if (cmp < 0) {
AvlNode<E> initLeft = left;
if (initLeft == null) {
result[0] = 0;
if (expectedCount == 0 && newCount > 0) {
return addLeftChild(e, newCount);
}
return this;
}
left = initLeft.setCount(comparator, e, expectedCount, newCount, result);
if (result[0] == expectedCount) {
if (newCount == 0 && result[0] != 0) {
this.distinctElements--;
} else if (newCount > 0 && result[0] == 0) {
this.distinctElements++;
}
this.totalCount += newCount - result[0];
}
return rebalance();
} else if (cmp > 0) {
AvlNode<E> initRight = right;
if (initRight == null) {
result[0] = 0;
if (expectedCount == 0 && newCount > 0) {
return addRightChild(e, newCount);
}
return this;
}
right = initRight.setCount(comparator, e, expectedCount, newCount, result);
if (result[0] == expectedCount) {
if (newCount == 0 && result[0] != 0) {
this.distinctElements--;
} else if (newCount > 0 && result[0] == 0) {
this.distinctElements++;
}
this.totalCount += newCount - result[0];
}
return rebalance();
}
// setting my count
result[0] = elemCount;
if (expectedCount == elemCount) {
if (newCount == 0) {
return deleteMe();
}
this.totalCount += newCount - elemCount;
this.elemCount = newCount;
}
return this;
}
private AvlNode<E> deleteMe() {
int oldElemCount = this.elemCount;
this.elemCount = 0;
successor(pred, succ);
if (left == null) {
return right;
} else if (right == null) {
return left;
} else if (left.height >= right.height) {
AvlNode<E> newTop = pred;
// newTop is the maximum node in my left subtree
newTop.left = left.removeMax(newTop);
newTop.right = right;
newTop.distinctElements = distinctElements - 1;
newTop.totalCount = totalCount - oldElemCount;
return newTop.rebalance();
} else {
AvlNode<E> newTop = succ;
newTop.right = right.removeMin(newTop);
newTop.left = left;
newTop.distinctElements = distinctElements - 1;
newTop.totalCount = totalCount - oldElemCount;
return newTop.rebalance();
}
}
// Removes the minimum node from this subtree to be reused elsewhere
private AvlNode<E> removeMin(AvlNode<E> node) {
if (left == null) {
return right;
} else {
left = left.removeMin(node);
distinctElements--;
totalCount -= node.elemCount;
return rebalance();
}
}
// Removes the maximum node from this subtree to be reused elsewhere
private AvlNode<E> removeMax(AvlNode<E> node) {
if (right == null) {
return left;
} else {
right = right.removeMax(node);
distinctElements--;
totalCount -= node.elemCount;
return rebalance();
}
}
private void recomputeMultiset() {
this.distinctElements = 1 + TreeMultiset.distinctElements(left) + TreeMultiset.distinctElements(right);
this.totalCount = elemCount + totalCount(left) + totalCount(right);
}
private void recomputeHeight() {
this.height = 1 + Math.max(height(left), height(right));
}
private void recompute() {
recomputeMultiset();
recomputeHeight();
}
private AvlNode<E> rebalance() {
switch (balanceFactor()) {
case -2:
if (right.balanceFactor() > 0) {
right = right.rotateRight();
}
return rotateLeft();
case 2:
if (left.balanceFactor() < 0) {
left = left.rotateLeft();
}
return rotateRight();
default:
recomputeHeight();
return this;
}
}
private int balanceFactor() {
return height(left) - height(right);
}
private AvlNode<E> rotateLeft() {
checkState(right != null);
AvlNode<E> newTop = right;
this.right = newTop.left;
newTop.left = this;
newTop.totalCount = this.totalCount;
newTop.distinctElements = this.distinctElements;
this.recompute();
newTop.recomputeHeight();
return newTop;
}
private AvlNode<E> rotateRight() {
checkState(left != null);
AvlNode<E> newTop = left;
this.left = newTop.right;
newTop.right = this;
newTop.totalCount = this.totalCount;
newTop.distinctElements = this.distinctElements;
this.recompute();
newTop.recomputeHeight();
return newTop;
}
private static long totalCount(@Nullable AvlNode<?> node) {
return (node == null) ? 0 : node.totalCount;
}
private static int height(@Nullable AvlNode<?> node) {
return (node == null) ? 0 : node.height;
}
@Nullable
private AvlNode<E> ceiling(Comparator<? super E> comparator, E e) {
int cmp = comparator.compare(e, elem);
if (cmp < 0) {
return (left == null) ? this : Objects.firstNonNull(left.ceiling(comparator, e), this);
} else if (cmp == 0) {
return this;
} else {
return (right == null) ? null : right.ceiling(comparator, e);
}
}
@Nullable
private AvlNode<E> floor(Comparator<? super E> comparator, E e) {
int cmp = comparator.compare(e, elem);
if (cmp > 0) {
return (right == null) ? this : Objects.firstNonNull(right.floor(comparator, e), this);
} else if (cmp == 0) {
return this;
} else {
return (left == null) ? null : left.floor(comparator, e);
}
}
@Override
public E getElement() {
return elem;
}
@Override
public int getCount() {
return elemCount;
}
@Override
public String toString() {
return Multisets.immutableEntry(getElement(), getCount()).toString();
}
}
private static <T> void successor(AvlNode<T> a, AvlNode<T> b) {
a.succ = b;
b.pred = a;
}
private static <T> void successor(AvlNode<T> a, AvlNode<T> b, AvlNode<T> c) {
successor(a, b);
successor(b, c);
}
/*
* TODO(jlevy): Decide whether entrySet() should return entries with an equals()
* method that calls the comparator to compare the two keys. If that change is
* made, AbstractMultiset.equals() can simply check whether two multisets have
* equal entry sets.
*/
/**
* @serialData the comparator, the number of distinct elements, the first
* element, its count, the second element, its count, and so on
*/
@GwtIncompatible("java.io.ObjectOutputStream")
private void writeObject(ObjectOutputStream stream) throws IOException {
stream.defaultWriteObject();
stream.writeObject(elementSet().comparator());
Serialization.writeMultiset(this, stream);
}
@GwtIncompatible("java.io.ObjectInputStream")
private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException {
stream.defaultReadObject();
@SuppressWarnings("unchecked")
// reading data stored by writeObject
Comparator<? super E> comparator = (Comparator<? super E>) stream.readObject();
Serialization.getFieldSetter(AbstractSortedMultiset.class, "comparator").set(this, comparator);
Serialization.getFieldSetter(TreeMultiset.class, "range").set(this, GeneralRange.all(comparator));
Serialization.getFieldSetter(TreeMultiset.class, "rootReference").set(this, new Reference<AvlNode<E>>());
AvlNode<E> header = new AvlNode<E>(null, 1);
Serialization.getFieldSetter(TreeMultiset.class, "header").set(this, header);
successor(header, header);
Serialization.populateMultiset(this, stream);
}
@GwtIncompatible("not needed in emulated source")
private static final long serialVersionUID = 1;
}