/* * Copyright (C) 2011 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except * in compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the * License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.primitives; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkNotNull; import java.math.BigInteger; import java.util.Arrays; import java.util.Comparator; import com.google.common.annotations.Beta; import com.google.common.annotations.GwtCompatible; /** * Static utility methods pertaining to {@code long} primitives that interpret * values as unsigned (that is, any negative value {@code x} is treated * as the positive value {@code 2^64 + x}). The methods for which signedness is * not an issue are in {@link Longs}, as well as signed versions of methods for * which signedness is an issue. * *
* In addition, this class provides several static methods for converting a * {@code long} to a {@code String} and a {@code String} to a {@code long} that * treat the {@code long} as an unsigned number. * *
* Users of these utilities must be extremely careful not to mix up * signed and unsigned {@code long} values. When possible, it is recommended * that the {@link UnsignedLong} wrapper class be used, at a small efficiency * penalty, to enforce the distinction in the type system. * *
* See the Guava User Guide article on * unsigned primitive utilities. * * @author Louis Wasserman * @author Brian Milch * @author Colin Evans * @since 10.0 */ @Beta @GwtCompatible public final class UnsignedLongs { private UnsignedLongs() { } public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1 /** * A (self-inverse) bijection which converts the ordering on unsigned longs to * the ordering on longs, that is, {@code a <= b} as unsigned longs if and only * if {@code flip(a) <= flip(b)} as signed longs. */ private static long flip(long a) { return a ^ Long.MIN_VALUE; } /** * Compares the two specified {@code long} values, treating them as unsigned * values between {@code 0} and {@code 2^64 - 1} inclusive. * * @param a the first unsigned {@code long} to compare * @param b the second unsigned {@code long} to compare * @return a negative value if {@code a} is less than {@code b}; a positive * value if {@code a} is greater than {@code b}; or zero if they are * equal */ public static int compare(long a, long b) { return Longs.compare(flip(a), flip(b)); } /** * Returns the least value present in {@code array}, treating values as * unsigned. * * @param array a nonempty array of unsigned {@code long} values * @return the value present in {@code array} that is less than or equal to * every other value in the array according to {@link #compare} * @throws IllegalArgumentException if {@code array} is empty */ public static long min(long... array) { checkArgument(array.length > 0); long min = flip(array[0]); for (int i = 1; i < array.length; i++) { long next = flip(array[i]); if (next < min) { min = next; } } return flip(min); } /** * Returns the greatest value present in {@code array}, treating values as * unsigned. * * @param array a nonempty array of unsigned {@code long} values * @return the value present in {@code array} that is greater than or equal to * every other value in the array according to {@link #compare} * @throws IllegalArgumentException if {@code array} is empty */ public static long max(long... array) { checkArgument(array.length > 0); long max = flip(array[0]); for (int i = 1; i < array.length; i++) { long next = flip(array[i]); if (next > max) { max = next; } } return flip(max); } /** * Returns a string containing the supplied unsigned {@code long} values * separated by {@code separator}. For example, {@code join("-", 1, 2, 3)} * returns the string {@code "1-2-3"}. * * @param separator the text that should appear between consecutive values in * the resulting string (but not at the start or end) * @param array an array of unsigned {@code long} values, possibly empty */ public static String join(String separator, long... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * 5); builder.append(toString(array[0])); for (int i = 1; i < array.length; i++) { builder.append(separator).append(toString(array[i])); } return builder.toString(); } /** * Returns a comparator that compares two arrays of unsigned {@code long} values * lexicographically. That is, it compares, using {@link #compare(long, long)}), * the first pair of values that follow any common prefix, or when one array is * a prefix of the other, treats the shorter array as the lesser. For example, * {@code [] < [1L] < [1L, 2L] < [2L] < [1L << 63]}. * *
* The returned comparator is inconsistent with {@link Object#equals(Object)}
* (since arrays support only identity equality), but it is consistent with
* {@link Arrays#equals(long[], long[])}.
*
* @see Lexicographical
* order article at Wikipedia
*/
public static Comparator
*
*
* @throws NumberFormatException if the string does not contain a valid unsigned
* {@code long} value
* @since 13.0
*/
public static long decode(String stringValue) {
ParseRequest request = ParseRequest.fromString(stringValue);
try {
return parseUnsignedLong(request.rawValue, request.radix);
} catch (NumberFormatException e) {
NumberFormatException decodeException = new NumberFormatException("Error parsing value: " + stringValue);
decodeException.initCause(e);
throw decodeException;
}
}
/**
* Returns the unsigned {@code long} value represented by a string with the
* given radix.
*
* @param s the string containing the unsigned {@code long} representation
* to be parsed.
* @param radix the radix to use while parsing {@code s}
* @throws NumberFormatException if the string does not contain a valid unsigned
* {@code long} with the given radix, or if
* {@code radix} is not between
* {@link Character#MIN_RADIX} and
* {@link Character#MAX_RADIX}.
* @throws NullPointerException if {@code s} is null (in contrast to
* {@link Long#parseLong(String)})
*/
public static long parseUnsignedLong(String s, int radix) {
checkNotNull(s);
if (s.length() == 0) {
throw new NumberFormatException("empty string");
}
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
throw new NumberFormatException("illegal radix: " + radix);
}
int max_safe_pos = maxSafeDigits[radix] - 1;
long value = 0;
for (int pos = 0; pos < s.length(); pos++) {
int digit = Character.digit(s.charAt(pos), radix);
if (digit == -1) {
throw new NumberFormatException(s);
}
if (pos > max_safe_pos && overflowInParse(value, digit, radix)) {
throw new NumberFormatException("Too large for unsigned long: " + s);
}
value = (value * radix) + digit;
}
return value;
}
/**
* Returns true if (current * radix) + digit is a number too large to be
* represented by an unsigned long. This is useful for detecting overflow while
* parsing a string representation of a number. Does not verify whether supplied
* radix is valid, passing an invalid radix will give undefined results or an
* ArrayIndexOutOfBoundsException.
*/
private static boolean overflowInParse(long current, int digit, int radix) {
if (current >= 0) {
if (current < maxValueDivs[radix]) {
return false;
}
if (current > maxValueDivs[radix]) {
return true;
}
// current == maxValueDivs[radix]
return (digit > maxValueMods[radix]);
}
// current < 0: high bit is set
return true;
}
/**
* Returns a string representation of x, where x is treated as unsigned.
*/
public static String toString(long x) {
return toString(x, 10);
}
/**
* Returns a string representation of {@code x} for the given radix, where
* {@code x} is treated as unsigned.
*
* @param x the value to convert to a string.
* @param radix the radix to use while working with {@code x}
* @throws IllegalArgumentException if {@code radix} is not between
* {@link Character#MIN_RADIX} and
* {@link Character#MAX_RADIX}.
*/
public static String toString(long x, int radix) {
checkArgument(radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
"radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix);
if (x == 0) {
// Simply return "0"
return "0";
} else {
char[] buf = new char[64];
int i = buf.length;
if (x < 0) {
// Separate off the last digit using unsigned division. That will leave
// a number that is nonnegative as a signed integer.
long quotient = divide(x, radix);
long rem = x - quotient * radix;
buf[--i] = Character.forDigit((int) rem, radix);
x = quotient;
}
// Simple modulo/division approach
while (x > 0) {
buf[--i] = Character.forDigit((int) (x % radix), radix);
x /= radix;
}
// Generate string
return new String(buf, i, buf.length - i);
}
}
// calculated as 0xffffffffffffffff / radix
private static final long[] maxValueDivs = new long[Character.MAX_RADIX + 1];
private static final int[] maxValueMods = new int[Character.MAX_RADIX + 1];
private static final int[] maxSafeDigits = new int[Character.MAX_RADIX + 1];
static {
BigInteger overflow = new BigInteger("10000000000000000", 16);
for (int i = Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
maxValueDivs[i] = divide(MAX_VALUE, i);
maxValueMods[i] = (int) remainder(MAX_VALUE, i);
maxSafeDigits[i] = overflow.toString(i).length() - 1;
}
}
}