/* * Copyright (C) 2008 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.primitives; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkElementIndex; import static com.google.common.base.Preconditions.checkNotNull; import static com.google.common.base.Preconditions.checkPositionIndexes; import static java.lang.Double.NEGATIVE_INFINITY; import static java.lang.Double.POSITIVE_INFINITY; import java.io.Serializable; import java.util.AbstractList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.List; import java.util.RandomAccess; import java.util.regex.Pattern; import javax.annotation.Nullable; import com.google.common.annotations.Beta; import com.google.common.annotations.GwtCompatible; import com.google.common.annotations.GwtIncompatible; import com.google.common.base.Converter; /** * Static utility methods pertaining to {@code double} primitives, that are not * already found in either {@link Double} or {@link Arrays}. * *
* See the Guava User Guide article on
*
* primitive utilities.
*
* @author Kevin Bourrillion
* @since 1.0
*/
@GwtCompatible(emulated = true)
public final class Doubles {
private Doubles() {
}
/**
* The number of bytes required to represent a primitive {@code double} value.
*
* @since 10.0
*/
public static final int BYTES = Double.SIZE / Byte.SIZE;
/**
* Returns a hash code for {@code value}; equal to the result of invoking
* {@code ((Double) value).hashCode()}.
*
* @param value a primitive {@code double} value
* @return a hash code for the value
*/
public static int hashCode(double value) {
return ((Double) value).hashCode();
// TODO(kevinb): do it this way when we can (GWT problem):
// long bits = Double.doubleToLongBits(value);
// return (int) (bits ^ (bits >>> 32));
}
/**
* Compares the two specified {@code double} values. The sign of the value
* returned is the same as that of ((Double) a).{@linkplain
* Double#compareTo compareTo}(b)
. As with that method, {@code NaN} is
* treated as greater than all other values, and {@code 0.0 > -0.0}.
*
*
* Note: this method simply delegates to the JDK method * {@link Double#compare}. It is provided for consistency with the other * primitive types, whose compare methods were not added to the JDK until JDK 7. * * @param a the first {@code double} to compare * @param b the second {@code double} to compare * @return a negative value if {@code a} is less than {@code b}; a positive * value if {@code a} is greater than {@code b}; or zero if they are * equal */ public static int compare(double a, double b) { return Double.compare(a, b); } /** * Returns {@code true} if {@code value} represents a real number. This is * equivalent to, but not necessarily implemented as, * {@code !(Double.isInfinite(value) || Double.isNaN(value))}. * * @since 10.0 */ public static boolean isFinite(double value) { return NEGATIVE_INFINITY < value & value < POSITIVE_INFINITY; } /** * Returns {@code true} if {@code target} is present as an element anywhere in * {@code array}. Note that this always returns {@code false} when {@code * target} is {@code NaN}. * * @param array an array of {@code double} values, possibly empty * @param target a primitive {@code double} value * @return {@code true} if {@code array[i] == target} for some value of {@code * i} */ public static boolean contains(double[] array, double target) { for (double value : array) { if (value == target) { return true; } } return false; } /** * Returns the index of the first appearance of the value {@code target} in * {@code array}. Note that this always returns {@code -1} when {@code target} * is {@code NaN}. * * @param array an array of {@code double} values, possibly empty * @param target a primitive {@code double} value * @return the least index {@code i} for which {@code array[i] == target}, or * {@code -1} if no such index exists. */ public static int indexOf(double[] array, double target) { return indexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int indexOf(double[] array, double target, int start, int end) { for (int i = start; i < end; i++) { if (array[i] == target) { return i; } } return -1; } /** * Returns the start position of the first occurrence of the specified {@code * target} within {@code array}, or {@code -1} if there is no such occurrence. * *
* More formally, returns the lowest index {@code i} such that {@code * java.util.Arrays.copyOfRange(array, i, i + target.length)} contains exactly * the same elements as {@code target}. * *
* Note that this always returns {@code -1} when {@code target} contains
* {@code NaN}.
*
* @param array the array to search for the sequence {@code target}
* @param target the array to search for as a sub-sequence of {@code array}
*/
public static int indexOf(double[] array, double[] target) {
checkNotNull(array, "array");
checkNotNull(target, "target");
if (target.length == 0) {
return 0;
}
outer: for (int i = 0; i < array.length - target.length + 1; i++) {
for (int j = 0; j < target.length; j++) {
if (array[i + j] != target[j]) {
continue outer;
}
}
return i;
}
return -1;
}
/**
* Returns the index of the last appearance of the value {@code target} in
* {@code array}. Note that this always returns {@code -1} when {@code target}
* is {@code NaN}.
*
* @param array an array of {@code double} values, possibly empty
* @param target a primitive {@code double} value
* @return the greatest index {@code i} for which {@code array[i] == target}, or
* {@code -1} if no such index exists.
*/
public static int lastIndexOf(double[] array, double target) {
return lastIndexOf(array, target, 0, array.length);
}
// TODO(kevinb): consider making this public
private static int lastIndexOf(double[] array, double target, int start, int end) {
for (int i = end - 1; i >= start; i--) {
if (array[i] == target) {
return i;
}
}
return -1;
}
/**
* Returns the least value present in {@code array}, using the same rules of
* comparison as {@link Math#min(double, double)}.
*
* @param array a nonempty array of {@code double} values
* @return the value present in {@code array} that is less than or equal to
* every other value in the array
* @throws IllegalArgumentException if {@code array} is empty
*/
public static double min(double... array) {
checkArgument(array.length > 0);
double min = array[0];
for (int i = 1; i < array.length; i++) {
min = Math.min(min, array[i]);
}
return min;
}
/**
* Returns the greatest value present in {@code array}, using the same rules of
* comparison as {@link Math#max(double, double)}.
*
* @param array a nonempty array of {@code double} values
* @return the value present in {@code array} that is greater than or equal to
* every other value in the array
* @throws IllegalArgumentException if {@code array} is empty
*/
public static double max(double... array) {
checkArgument(array.length > 0);
double max = array[0];
for (int i = 1; i < array.length; i++) {
max = Math.max(max, array[i]);
}
return max;
}
/**
* Returns the values from each provided array combined into a single array. For
* example, {@code concat(new double[] {a, b}, new double[] {}, new double[]
* {c}} returns the array {@code {a, b, c}}.
*
* @param arrays zero or more {@code double} arrays
* @return a single array containing all the values from the source arrays, in
* order
*/
public static double[] concat(double[]... arrays) {
int length = 0;
for (double[] array : arrays) {
length += array.length;
}
double[] result = new double[length];
int pos = 0;
for (double[] array : arrays) {
System.arraycopy(array, 0, result, pos, array.length);
pos += array.length;
}
return result;
}
private static final class DoubleConverter extends Converter
* Note that {@link Double#toString(double)} formats {@code double} differently
* in GWT sometimes. In the previous example, it returns the string
* {@code "1-2-3"}.
*
* @param separator the text that should appear between consecutive values in
* the resulting string (but not at the start or end)
* @param array an array of {@code double} values, possibly empty
*/
public static String join(String separator, double... array) {
checkNotNull(separator);
if (array.length == 0) {
return "";
}
// For pre-sizing a builder, just get the right order of magnitude
StringBuilder builder = new StringBuilder(array.length * 12);
builder.append(array[0]);
for (int i = 1; i < array.length; i++) {
builder.append(separator).append(array[i]);
}
return builder.toString();
}
/**
* Returns a comparator that compares two {@code double} arrays
* lexicographically. That is, it compares, using
* {@link #compare(double, double)}), the first pair of values that follow any
* common prefix, or when one array is a prefix of the other, treats the shorter
* array as the lesser. For example, {@code [] < [1.0] < [1.0, 2.0] < [2.0]}.
*
*
* The returned comparator is inconsistent with {@link Object#equals(Object)}
* (since arrays support only identity equality), but it is consistent with
* {@link Arrays#equals(double[], double[])}.
*
* @see
* Lexicographical order article at Wikipedia
* @since 2.0
*/
public static Comparator
* Elements are copied from the argument collection as if by {@code
* collection.toArray()}. Calling this method is as thread-safe as calling that
* method.
*
* @param collection a collection of {@code Number} instances
* @return an array containing the same values as {@code collection}, in the
* same order, converted to primitives
* @throws NullPointerException if {@code collection} or any of its elements is
* null
* @since 1.0 (parameter was {@code Collection
* The returned list maintains the values, but not the identities, of
* {@code Double} objects written to or read from it. For example, whether
* {@code list.get(0) == list.get(0)} is true for the returned list is
* unspecified.
*
*
* The returned list may have unexpected behavior if it contains {@code
* NaN}, or if {@code NaN} is used as a parameter to any of its methods.
*
* @param backingArray the array to back the list
* @return a list view of the array
*/
public static List
* Unlike {@link Double#parseDouble(String)}, this method returns {@code null}
* instead of throwing an exception if parsing fails. Valid inputs are exactly
* those accepted by {@link Double#valueOf(String)}, except that leading and
* trailing whitespace is not permitted.
*
*
* This implementation is likely to be faster than {@code
* Double.parseDouble} if many failures are expected.
*
* @param string the string representation of a {@code double} value
* @return the floating point value represented by {@code string}, or
* {@code null} if {@code string} has a length of zero or cannot be
* parsed as a {@code double} value
* @since 14.0
*/
@GwtIncompatible("regular expressions")
@Nullable
@Beta
public static Double tryParse(String string) {
if (FLOATING_POINT_PATTERN.matcher(string).matches()) {
// TODO(user): could be potentially optimized, but only with
// extensive testing
try {
return Double.parseDouble(string);
} catch (NumberFormatException e) {
// Double.parseDouble has changed specs several times, so fall through
// gracefully
}
}
return null;
}
}
'\u002D'
) is recognized as the
* minus sign.
*
*